3.1 Installation

3.1.1 Installation General: The laths shall be installed in accordance with IBC Section 2510, and either Section 2511 or 2512; 2018 and 2015 IRC Section R703.7 (2012 and 2009 IRC Section R703.6); ASTM C1063; or an evaluation report on exterior cementitious wall coating systems issued by an approved and accredited evaluation report service. The long dimension of the lath shall be perpendicular to supports, except that at gable walls on exterior installations, the lath may be installed with the long dimension parallel to the roof slope.

3.3.2 StructaLath III No. 17 SFCR: The lath shall be applied to vertical surfaces having wood or metal supports or to horizontal wood, metal or concrete supports. The maximum support spacing shall be 16 inches (406 mm) center to center. Fastener type and spacing shall comply with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as applicable for welded wire lath, except that the fasteners shall attach the lath to the framing supports either at the furring crimps on the vertical cross wires, at the intersection of the longitudinal wire and cross wire, or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or a staple over any longitudinal wire. The lath shall be lapped a minimum of one mesh at sides. Ends shall be lapped a minimum of one mesh and shall occur over supports. Additional installation requirements as set forth in an evaluation report on exterior cementitious wall coating systems shall apply as applicable.

3.3.3 StructaLath No. 17 SFCR Twin Trac 2.5: The lath shall be applied to vertical surfaces having wood or metal supports or to horizontal wood, metal or concrete supports. For use as an alternative to the 2.5 lb/yd² (1.4 kg/m²) expanded sheet metal lath, the maximum support spacing shall comply with Table 1 of ASTM C1063 for 2.5 lbs/yd² (1.4 kg/m²) diamond mesh metal lath. The fastener type and spacing shall comply with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as applicable for expanded sheet metal lath, except that the fasteners shall attach the lath to the framing supports either at the furring crimps on the vertical cross wires, or at the intersection of the longitudinal wire and cross wire; or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or a staple over any longitudinal wire. For use as an alternative to the 1.14 lb/yd² (0.618 kg/m²) welded wire lath, the maximum support spacing shall comply with Table 1 of ASTM C1063 for 1.14 lb/yd² (0.618 kg/m²) welded wire lath. The fastener type and spacing shall comply with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as
applicable for welded wire lath, except that the fasteners shall attach the lath to the framing supports either at the furring crimps on the vertical cross wires, or at the intersection of the longitudinal wire and cross wire; or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or a staple over any longitudinal wire.

3.3.4 V-Truss Walls and Ceilings Lath and V-Truss Walls and Ceilings Lath II: The lath shall be applied to vertical surfaces having wood or metal supports or to horizontal wood, metal, or concrete supports. For use as an alternative to the ⅜-inch (9.6 mm), 3.4 lb/yd² (1.8 kg/m²) rib metal lath, the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for ⅜-inch (9.6 mm), 3.4 lb/yd² (1.8 kg/m²) rib metal lath. Fastener type and spacing shall comply with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as applicable for 1.95 lb/yd² (1.1 kg/m²) expanded sheet metal, except that the fasteners may be 1 ½ inch (37.6 mm) long No. 16 gauge (0.063 inch/1.6 mm) staples or No. 11 gauge (0.12 inch/3 mm) roofing nails, driven flush with plaster base and shall attach the lath to the framing supports at every second rib, either at the furring crimps on the vertical cross wires, at the intersection of the longitudinal wire and cross wire, or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or a staple over any longitudinal wire. The lath shall be lapped a minimum of one mesh at sides. Ends shall be a minimum of one mesh and shall occur over supports. The ends of sheets shall be staggered between courses.

For use as an alternative to 1.4 lb/yd² (0.8 kg/m²) woven wire lath, the maximum support spacing shall be in accordance with Table 3 of ASTM C1063 for 1.4 lb/yd² (0.8 kg/m²) woven wire lath. Fastener type and spacing shall comply with ASTM C1063 for woven wire lath, except that the fasteners shall attach the lath to the framing supports at every second rib, either at the furring crimps on the vertical cross wires, at the intersection of the longitudinal wire and cross wire or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or a staple over any longitudinal wire. The lath shall be lapped a minimum of one mesh at sides. Ends shall be staggered between courses.

3.3.5 Structa Mega Lath: The lath shall be applied to vertical surfaces having wood or metal supports or to horizontal wood, metal, or concrete supports. For use as an alternative to the 1.95 lb/yd² (0.993 kg/m²) woven wire lath specified in ASTM C933 the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for 1.95 lb/yd² (1.1 kg/m²) welded wire lath. Fastener type and spacing shall be as specified in ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (IRC Section R703.6.1) as applicable for 1.95 lb/yd² (1.1 kg/m²) welded wire lath, except that the fasteners shall attach to the lath to the framing supports either between the primary and secondary longitudinal wires or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal wires, or there shall be a staple over any longitudinal wire. The lath shall be lapped a minimum of one mesh at sides. Ends shall be lapped a minimum of one mesh and shall occur over supports.

For use as an alternative to the 3.4 lb/yd² (1.8 kg/m²) expanded sheet metal lath, the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for 3.4 lb/yd² (1.8 kg/m²) expanded sheet metal lath, except that the fasteners shall attach the lath to the framing supports either between the primary and secondary longitudinal wires, or there shall be a staple over any longitudinal wire. Structa Mega Lath may be applied to vertical surfaces having horizontal metal support members (furring). The minimum metal thickness of the supports is No. 20 gauge [0.0359 inch (0.91 mm)]. For use as an alternative to the 1.95 lb/yd² (0.993 kg/m²) welded wire lath, the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for 1.95 lb/yd² (1.1 kg/m²) welded wire lath. For use as an alternative to the 1.4 lb/yd² (0.8 kg/m²) woven wire lath, the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for 1.4 lb/yd² (0.8 kg/m²) woven wire lath. For use as an alternative to 3.4 lb/yd² (1.8 kg/m²) expanded sheet metal lath, the maximum support spacing shall be in accordance with Table 1 of ASTM C1063 for 3.4 lb/yd² (1.8 kg/m²) diamond mesh metal lath. The long dimension of the lath shall be installed in a vertical orientation, with screw fastener type and spacing complying with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as applicable. Fasteners shall be located between the primary and secondary longitudinal wires and be long enough to penetrate metal support members. A minimum of 75 percent of the fasteners shall be positioned directly below the cross-wire. The horizontal metal support system shall be designed to support the gravity loads of the plaster-lath matrix and to resist wind loads in accordance with IBC or IRC.

The lath shall be lapped a minimum of one mesh at sides. Ends shall be staggered a minimum of one mesh and shall occur over supports.

3.3.6 Structa Lath III SFCR 316: The lath shall be applied to vertical surfaces having wood or metal supports or to horizontal wood, metal or concrete supports. The maximum support spacing shall be 16 inches (406 mm) center to center. Fastener type and spacing shall comply with ASTM C1063 or 2018 and 2015 IRC Section R703.7.1 (2012 and 2009 IRC Section R703.6.1) as applicable for welded wire lath, except that the fasteners shall attach the lath to the framing supports either at the furring crimps on the vertical cross wires, at the intersection of the longitudinal wire and cross wire, or the lath may be installed by placing a nail or screw fastener between the two Twin Trac longitudinal
wires, or a staple over any longitudinal wire. The lath shall be lapped a minimum of one mesh at sides. Ends shall be lapped a minimum of one mesh and shall occur over supports. Additional installation requirements as set forth in an evaluation report on proprietary one coat stucco systems shall apply as applicable. The total plaster thickness shall be 1/2-inch (12.7 mm) maximum.

4.0 PRODUCT DESCRIPTION

4.1. StructaLath Ill No. 17 SFCR: The self-furring, welded wire lath is an alternative to the 1.14 lb/yd² (0.618 kg/m²) expanded sheet metal lath specified in ASTM C933. The lath is produced from cold-rolled longitudinal wires with coated thicknesses of 0.03 inch (0.76 mm) by 0.068 inch (1.72 mm), and cross wires with a 0.047-inch (1.19 mm) coated diameter. The lath openings are formed by longitudinal and cross wires that are resistance-welded at the wire intersections and measure 1/2-inches-by-1 1/2-inches (38 mm by 38 mm). The lath has an additional six secondary cold-rolled longitudinal wires with coated thickness of 0.03 inch (0.76 mm) by 0.068 inch (1.72 mm) that are resistance welded to the cross wires. All wires have a Class 1 galvanized coating complying with ASTM A641. The self-furring crimps have a minimum ¼ inch (6.4 mm) furring distance and are spaced at 3 inches (76 mm) on center. The lath has six additional cold rolled rectangular longitudinal wires, resistance welded to the cross wires and spaced 5 3/4 and 4 1/2 inches (146 and 114 mm) on center. The wire has a Class 1 galvanized coating complying with ASTM A641. The lath self-furring crimps occur at each cross wire to provide a minimum ¼ inch (6.4 mm) furring distance and are spaced at 4 and 3 inches (102 and 76 mm) on center. The nominal weight of the lath is 1.14 lb/yd² (0.62 kg/m²). The lath is available in rolls 37 inches (974 mm wide) and 150 feet (45,720 mm) long.

4.2. StructaLath III SFCR 316: The self-furring, welded wire lath is an alternative to the 1.14 lb/yd² (0.618 kg/m²) expanded sheet metal lath specified in ASTM C933 and is recognized for use as reinforcement in maximum 1 1/2-inch (12.7 mm) thick proprietary one coat stucco systems. The lath is produced from cold-rolled longitudinal wires with coated thicknesses of 0.03 inch (0.76 mm) by 0.068 inch (1.72 mm) and cross wires having a 0.047 inch (1.19 mm) coated diameter. The lath has 1 1/2-inch-by-1 1/2-inch (38 mm by 38 mm) openings formed by longitudinal and cross wires that are resistance welded at the wire intersections. The lath has an additional six secondary cold-rolled longitudinal wires with coated thickness of 0.03 inch (0.76 mm) by 0.068 inch (1.72 mm) that are resistance welded to the cross wires. The wire has a Class 1 galvanized coating complying with ASTM A641. The self-furring crimps have a minimum 3/16-inch (9.52 mm) furring distance and are spaced at 3 inches (76 mm) on center on each cross wire. The nominal weight of the lath is 1.0 lb/yd² (0.54 kg/m²). The lath is available in rolls 38 3/8 inches (974 mm) wide and 150 feet (45 720 mm) long.

4.3. StructaLath No. 17 SFCR Twin Trac 2.5: The self-furring welded wire lath is an alternative to the 2.5 lb/yd² (1.4 kg/m²) expanded sheet metal lath specified in ASTM C847 and an alternative to the 1.14 lb/yd² (0.618 kg/m²) welded wire lath specified in ASTM C933. The lath is produced from cold rolled rectangular longitudinal wires with a coated thickness of 0.026 inch (0.66 mm) by 0.064 inch (1.63 mm) and 0.047 inch (1.19 mm) coated diameter cross wires. The lath openings are formed by resistance welding longitudinal and cross wires at intersections that measure 1 inch by 1 1/2 inches (25.4 by 38.1 mm) except at the furring crimps where the opening dimensions are 1/4 inch by 1 1/2 inches (19.1 mm by 38.1 mm). This lath has six additional cold rolled rectangular longitudinal wires, resistance welded to the cross wires and spaced 5 3/4 and 4 1/2 inches (146 and 114 mm) on center. The lath has a Class 1 galvanized coating complying with ASTM A641. The lath self-furring crimps occur at each cross wire to provide a minimum 1 1/4 inch (6.4 mm) furring distance and are spaced at 4 and 3 inches (102 and 76 mm) on center. The nominal weight of the lath is 1.14 lb/yd² (0.62 kg/m²). The lath is available in rolls 37 inches (974 mm wide) and 150 feet (45,720 mm) long.

4.4 Structa Mega Lath: The self-furring welded wire lath is an alternative to the 3.4 lb/yd² (1.8 kg/m²) expanded sheet metal lath specified in ASTM C847 and the 1.95 lb/yd² (1.1 kg/m²) welded wire lath specified in ASTM C933. The lath is produced from cold-rolled rectangular longitudinal wires with coated thickness of 0.0335 inch (0.83 mm) by 0.075 inch (1.90 mm), and 0.056 inch (1.42 mm) coated diameter round cross wires. The lath openings are formed by resistance welding longitudinal and cross wires, at the intersections that measure 1 1/16 inch by 1 1/2 inches (17.5 by 38.1 mm) except at the furring crimps where the openings are 3/4 inch by 1 1/2 inches (19.0 by 38.1 mm). Structa Mega Lath has six additional cold-rolled rectangular longitudinal wires, resistance welded to the cross wires, and spaced 5 1/2 inches (137 mm) on center. The wire has a Class 1 galvanized coating complying with ASTM A641. The lath self-furring crimps occur at each cross wire, provide a minimum 1/2 inch (6.4 mm) furring distance, and are spaced at 2 1/4 inches (54 mm) on center. The nominal weight of the lath is 1.95 lb/yd² (1.05 kg/m²). The lath is available in rolls 30 inches (762 mm) wide and 108 feet (32 918 mm) long.

4.5 V-Truss Walls and Ceilings Lath: The self-furring welded wire lath is an alternative to the 3/8-inch (9.6 mm), 3.4 lb./yd² (1.8 kg/m²) rib metal lath specified in ASTM C847 and the 1.4 lb./yd² (0.8 kg/m²) woven wire lath specified in ASTM C1032. The lath is produced from cold-rolled rectangular longitudinal wires, having coated thicknesses of 0.0335 inch (0.85 mm) by 0.064 inch (1.62 mm), and round cross wires with a 0.05 inch (1.27 mm) coated diameter. The wire has a Class 1 galvanized coating complying with ASTM A641. The lath has rectangular openings are formed by resistance welding longitudinal and cross wires at the wire intersections and measure 0.7-inch-by-1.5-inch (17.8 by 38 mm). The lath furring crimps occur at each cross wire, provide a minimum 3/8-inch (9.5 mm) furring distance, and spaced at 1.9 inches (48 mm) on center. Backing wires occur in the longitudinal direction, have a 0.050 inch (1.27 mm) coated diameter, and are resistance welded to the bottom of the furring crimps. The lath has a perforated kraft paper placed between the primary wires and
the backing wires. The paper is cut back 2 inches (51 mm) on each end, and each side is wrapped and adhered around the outermost backing wire. The nominal weight of the lath is 2.2 lb/yd² (1.2 kg/m²). The lath is provided in flat sheets 28½ inches (721 mm) wide by 97½ inches (2475 mm) long.

4.6 V-Truss Walls and Ceilings Lath II: The self-furring welded wire lath is an alternative to the 3/8-inch (9.6 mm), 3.4 lb/yd² (1.8 kg/m²) rib metal lath specified in ASTM C847 and the 1.4 lb/yd² (0.8 kg/m²) woven wire lath specified in ASTM C1032. The lath is produced from cold-rolled rectangular longitudinal wires, having coated thicknesses of 0.033 inch (0.84 mm) by 0.060 inch (1.524 mm), and round cross wires with a 0.054 inch (1.37 mm) coated diameter. The wire has a Class 1 galvanized coating complying with ASTM A641. The lath rectangular openings are formed by resistance welding longitudinal and cross wires at the wire intersections and measure 0.7-inch-by-1.5-inch (17.8 mm by 38 mm). The lath furring crimps occur at each cross wire, providing a minimum 0.25-inch (6.35 mm) furring distance, and are spaced at 1.9 inches (48 mm) on center. Backing wires occur in the longitudinal direction, having a 0.054-inch (1.37 mm) coated diameter, and are resistance welded to the bottom of the furring crimps. The lath has perforated kraft paper placed between the primary wires and the backing wires. The paper is cut pack 2 inches (51 mm) on each end, and each side is wrapped and adhered around the outermost backing wire. The nominal weight of the lath is 2.21 lb/yd² (1.20 kg/m²). The lath is provided in flat sheets 28½ inches (721 mm) wide by 97½ inches (2475 mm) long.

5.0 IDENTIFICATION

5.1 StructaLath No. 17 SFCR III, StructaLath No. 17 SFCR Twin Trac 2.5, StructaLath SFCR 316 and Structa Mega Lath are packaged in rolls and identified by a label bearing the name and address of Structa Wire Corp., the product name, the evaluation report number (ER-2017), and a description of the product (lath opening size, product width and roll length).

5.2 V-Truss Walls and Ceilings Lath and V-Truss Walls and Ceilings Lath II are produced in sheets and are identified by a label bearing the name and address of Structa Wire Corp., the product name, the evaluation report number (ER-2017), and a description of the product (Lath opening size, product length and width).
FLORIDA SUPPLEMENT

STRUCTA WIRE CORP.
1395 North Grandview Highway
Vancouver, BC V5N 1N2
info@structawire.com
www.structawire.com

STRUCTALATH, NO. 17 III SFCR, NO. 17 SFCR
TWIN TRACK 2.5, STRUCTA MEGA LATH, V-TRUSS WALLS AND CEILINGS LATH, V-TRUSS WALLS AND CEILINGS LATH II,
STRUCTALATH III 316 SFCR

CSI Section:
09 22 36 Lathing

1.0 RECOGNITION

The StructaLath self-furring, welded wire laths evaluated in IAPMO UES ER-2017 are satisfactory alternatives to the laths prescribed in the following codes and regulations:

- 2014 Florida Building Code, Building (FBC, Building)
- 2014 Florida Building Code, Residential (FBC, Residential)

2.0 LIMITATIONS

2.1 Verification shall be provided that a quality assurance agency audits the manufacturers quality assurance program and audits the production quality of products, in accordance with Section (5)(d) of Florida Rule 61G20-3.008. The quality assurance agency shall be approved by the Commission (or the building official when the report holder does not possess an approval by the Commission).

2.2 The scope of review includes the requirements for High-velocity Hurricane Zones in the 2014 Florida Building Code, Building and the 2014 Florida Building Code, Residential.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org